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STRUCTURE OF A LAMINAR BOUNDARY LAYER WITH 

DISTRIBUTED SUCTION 

S. K. Betyaev UDC 533.06 

Suctioning of the boundary layer for purposes of increasing the aerodynamic quality of a 
wing has two purposes: to make the flow laminar and to eliminate or delay its detachment. 
Both the study of the stability of the flow and the formulation of the variational problem of 
determining the energetically optimum rate of suctioning must be based on an analysis of the 
flow in the region near the wall, where pressure losses exist and a transition occurs from 
sharp changes in the velocity of a continuous (averaged) distribution. This analysis is 
performed within the framework of the Navier-Stokes equations with the help of the combined 
method of different scales and joining of asymptotic expansions for the simplest possible 
formulation of the problem and layout of the suction system. The conditions required for 
suctioning off a distributed flow of liquid, which is assumed to be given, are determined. 

i. We choose as the basic unit parameters the chord of the profile, the velocity of the 
unperturbed flow, and the density of the fluid. In a locally Cartesian coordinate system 
xl, yl with the xl axis oriented along the contour of the profile, the equation of transport 
of vorticity A~ (~ is the stream function, ~ = ~2/~x~ + ~=/~y~) in a two-dimensional flow has 
the form L(A~) = 0, where 6 -2 = i/~ is the Reynolds number, ~ is the coefficient of kinematic 
viscosity, and the quasilinear differential operator 

L= a__~ a a~ a 8~A. (i.i) 
Oy 1 0 ~  ax 1 ay 1 

The rate of suctioning of the boundary layer vol is equal, in order of magnitude, to the 
thickness of the boundary layer 

Vol = 8vo(xO.  ( l .  2) 

If Vol is less than this quantity, then suctioning has an insignificant effect on the 
boundary layer. Conversely, if vol is greater than 0(6), then a nonviscous flow is realized 
[ 6 ] .  

We s h a l l  a s s u m e  t h a t  t h e  s u c t i o n i n g  i s  r e a l i z e d  t h r o u g h  a r e g u l a r  a r r a y  o f  t r a n s v e r s e  
s l i t s  w i t h  h a l f - s p a c i n g  T = B ( x : ) 6  n ,  w h e r e  0 < n ~ 2 .  F o r  n > 2,  t h e  s c a l e s  o f  t h e  p e r t u r b a -  
t i o n s  a r e  s o  s m a l l  t h a t  due  t o  t h e  m a n i f e s t a t i o n  o f  m o l e c u l a r  e f f e c t s ,  t h e  N a v i e r - - S t o k e s  e q u a -  
t i o n  b e c o m e s  i n a p p l i c a b l e .  The c a s e  n § 0 c o r r e s p o n d s  t o  d i s c r e t e  s u c t i o n i n g .  We s h a l l  
a s s u m e  t h a t  t h e  p e r m e a b i l i t y  f a c t o r  Xo = X o x / T ,  w h e r e  Xo~ i s  t h e  h a l f - w i d t h  o f  a s l i t ,  i s  
a r b i t r a r y  ( O ~ x o ~ l ) .  

I n  a p p l i c a t i o n  t o  s u c t i o n i n g  o f  l i q u i d  t h r o u g h  p o r o u s  w a l l s ,  t h e  m o d e l  o f  o v e r f l o w  o f  
l i q u i d ,  e x a m i n e d  b e l o w ,  i g n o r e s  t h e  s t o c h a s t i c  d i s t r i b u t i o n  o f  p o r e s  a n d  t h e i r  s h a p e ;  
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however, it has an ideological justification, because Darcy's model, which has been widely 
tested in practice in problems of filtering of potential flows, is inapplicable to suctioning 
of eddying flows, i.e., fuctioning of the boundary layer. 

The concept of a boundary layer is valid if the length of the section of suctioning is 
equal in order of magnitude to 0(I), Reynolds number is large, i.e., 6 << i, and the normal 
component of the velocity satisfies the condition (1.2). In the boundary layer approximation, 
we have 

~(x~, y~; ~) = ~ ( x , ,  Y) + o(~)~ 

w h e r e  Yl = 6Y. The  s t r e a m  f u n c t i o n  ~1 i s  d e t e r m i n e d  f rom P r a n d t l ' s  e q u a t i o n ,  f r om t h e  
b o u n d a r y  c o n d i t i o n  f o r  Y + ~ ,  a n d  a l s o  f r o m  t h e  c o n d i t i o n s  a t  t h e  w a l l  

T l r  (xl, O) = O ,  ~1 (xl, O) = --  ~ vodx 1 (1 ~3) 

The s o l u t i o n  o f  t h e  b o u n d a r y - l a y e r  e q u a t i o n  y i e l d s  t h e  d i m e n s i o n l e s s  f r i c t i o n  s t r e s s  
~ ( x , ) ,  w h i c h  w i l l  b e  r e q u i r e d  b e l o w  f o r  j o i n i n g  t h e  a s y m p t o t i c  e x p a n s i o n s :  

~ l r r  ~1, "Y--~ O) = ~. (1.4) 

We shall also assume that the presence at the bottom of the boundary layer is given; 
po(xl) + 6A(xl) + 0(6), where po(x,) is the pressure distribution at the outer boundary of 
the boundary layer 1 (Fig. i). 

2. In the sublayer 2, with a characteristic longitudinal size T, the flow is almost 
periodic -- the amplitude of high-frequency perturbations changes along the xl axis on scales 
comparable to the chord of the profile. To describe such flows, we shall make use of the 
method of different scales, introducing the "fast" variable x: 

dx/dxl = i/~.  ( 2 .  i) 

The o p e r a t o r  L w i l l  n o t  b e  s i n g u l a r ,  i f  t h e  t r a n s v e r s e  c o o r d i n a t e  y ,  i s  s t r e t c h e d  by  
a f a c t o r  T: y ,  = ~ y .  I n  a d d i t i o n ,  we r e t a i n  t h e  " s l o w "  v a r i a b l e  x x ,  t h e  d e p e n d e n c e  o f  t h e  
s o l u t i o n  on  w h i c h  i s  o b v i o u s .  Thus  i n s t e a d  o f  t h e  two i n d e p e n d e n t  v a r i a b l e s  x~ a n d  yx we 
s h a l l  h a v e  t h r e e  v a r i a b l e s ,  x ,  y ,  a n d  x x .  

We s h a l l  f i r s t  s t u d y  t h e  c a s e  n > 1.  The s o l u t i o n  i n  t h e  s u b l a y e r  2 ,  w h i c h  h a s  a t h i c k -  
n e s s  o f  t h e  o r d e r  o f  o ( 6 n ) ,  m u s t  b e  j o i n e d  w i t h  t h e  c o n d i t i o n s  a t  t h e  b o t t o m  o f  t h e  b o u n d a r y  
l a y e r  (Y § 0 ) .  From t h e  c o n d i t i o n  ( 1 . 4 ) ,  we h a v e  

, = o ( 6 Y 9  = o(~v~/~  ~) = o (6~ -~ ) .  

From the second condition (1.3) we find 

= O(T~) = O(~n+l). 

Different estimates were obtained for the stream function. Since n + I~ 2n -- i, the 
vorticity of the flow at infinity (y § ~) is determined by the first term in the inner ex- 
pansion and is mame important than the overflow through the slit, which is determined by 
subsequent terms in the expansion. The estimates for ~ are the same only in the limiting 
case n = 2; the first term in the expansion is responsible for the sectioning. 

Turning now to the starting operator (i.i), we conclude that the first term in the 
expansion is determined from the equations of nonviscous flow for n < 3/2 and from the equa- 
tions of creep motions for n > 3/2, and each subsequent term in the expansion, taking into 
account the effect of the terms dropped in the first approximation, are smaller, in order of 
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magnitude, than the preceding term by a factor of 612n-31. For n = 3/2, the series becomes 
infinite -- the flow is described by the complete Navier--Stokes equation. For any n # 3/2, 
only a finite number of terms in the series will be greater than the term proportional to 
~n+z and responsible for the suctioning of the boundary layer. 

Thus we represent the inner expansion in the form 

'~ (Xl, Yl; ~) = ~2n--1r (X, y, Xl) --}- (~2n--1 E ~ 2n--3,,~ (X, y, Xl) -'~ (5nq-1~22 (X, y, Xl) .-~ 0 (6n'{'l), (2.2) 
3=1 

where N = <(2 -- n)/([2n -- 31)> is the integral part of the number (2 -- n)/(12n-- 31). 

Since the functions 4;, which satisfy zero boundary conditions, are not associated with 

suctioning of the fluid and do not determine either the slipping of the flow on the permeable 
boundary or the pressure drop in layer 2, we shall restrict the analysis to the functions 4, 
and 42, which are found independently of 4~- We shall assume that the expansion (2.2) is also 
valid in cases when the number (2 -- n)/(12~-- 31) is an integer. 

The boundary conditions for the functions 4, and 42 in the limit y § +~o are determined 
by joining with the conditions (1.3) and (1.4): 

r OO] Xl ) = ~2y(X ' OO] Xl) = 0~ r OOs Xl) = B2~, ~2X = - - B ~ .  ( 2 . 3 )  

We shall restrict our attention to the analysis of the simplest case: flow over an 
array of slits (Fig. 2). The coordinates of the point C' are (xo, 0). Since the flow is 
periodic with respect to x, the region is stretched along the normal to the contour of the 
profile (infinite strip with slits). The condition of periodicity of the flow consists of 
the fact that the velocity vector, the pressure, and the vorticity on the lines x = const + 
2k, where k = 0, i, 2, ..., assume different values for one and the same value of y. In 
addition, on solid boundaries (xo~ < [xI 41), the sticking condition is satisfied. 

Since the velocities in sublayer 2 are small, under the assumptions adopted, the inner 
expansion (2.2) is also valid in the case of distributed suctioning off (or injection) of 
compressible gas. 

The same expansion is also valid in the case of continuous suctioning of the spatial 
boundary layer with the help of short-spaced transverse slits, since the law of flat sections 
is valid: The coordinate varying along the slits is "frozen in" and is a parameter, and the 
corresponding velocity component is determined independently. 

In order for the solution of the problem to be unique, it is necessary to give the 
function sought on the entire boundary of the region. It is evident that there are not 
enough boundary conditions at y =-~. Their form depends on the specific suctioning system 
(region 3 in Fig. i). Noting that the inclusion of the constant vorticity at y =-~o does 
not introduce additional difficulties into the solution of the problem, in analogy to (2.3), 
we assume that 

~IX ~ ~lyy = ~2y = 0% ~2X = --BUo. (2.4) 

The form of the expansion for the pressure is determined from the Navier-Stokes equations. 
For n > 3/2, we have 
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p (x~, yi; ~) = Po (x~) + aA (Zl) + ~B-np~ (x, y, x~) + 
N 

+ ,~n-' .E ~'~-~%,~ (~, :~, ~,) + , ~ - " r , - %  (~, ~ x,) + ,, ( a ~ ' )  

(2.5) 

3. We first obtain the solution of the problem of determining @~ and @2 for n > 3/2. 
In this case, both functions are a solution of the equations for creeping flows. Two-dimen- 
sional problems of the theory of creeping, flows are solved by the method of selecting some 
analytic function in a conformally transformed plane [i, 2]. This method can be used if the 
solution is expressed with the help of elementary functions. The algorithm proposed below 
can be used to obtain the solution in the general case. 

Assume that the conformal transformation z(~) = x(~, n) + iy(~, n), where r : ~ + in, 
transforms the region of flow (the spacing of the array [xI~. i) into the upper half-plane 
n~ 0, so that the straight line n = 0 represents the image of the solid boundaries (Xo~ 

Ixl < i): 

z=- -~-h l  ~ - - i  ~+~b/'  b = e t g T  > 1 "  

The c o r r e s p o n d e n c e  o f  t h e  p o i n t s  i s  shown i n  F i g s .  2 a n d  3 .  The two s e g m e n t s  AB a n d  EN 
c o i n c i d e  w i t h  t h e  ~ = 0 a x i s :  0 ~ n  ~ l / b  a n d  b ~ < ~ .  

The q u a n t i t y  W ( z ,  x~)  = p --  i m ,  w h e r e  m = --A~ = - -32@/3x 2 --  32@/3y z ( t h e  s u b s c r i p t s  on  
t h e  i n d i c e s  p a n d  m a r e  d r o p p e d ) ,  m u s t  b e  an  a n a l y t i c  f u n c t i o n :  I t s  i m a g i n a r y  a n d  r e a l  p a r t s  
a r e  r e l a t e d  b y  t h e  Cauchy - -R iemann  c o n d i t i o n s .  The v a r i a b l e  x~ i s  " f r o z e n  i n , "  a n d  i t  c a n  b e  
r e g a r d e d  a s  a p a r a m e t e r .  F o r  m t h e  b o u n d a r y  c o n d i t i o n s  a r e  g i v e n  a t  y § a n d  f o r  t h e  
p r e s s u r e  a t  y + 4 ~ .  We r e p r e s e n t  t h e  f u n c t i o n  W i n  t h e  f o r m  

W = --811(~) -I-z(~)/'(~)/z'(~)] - I - P o -  i~o, (3 .2 )  

where f(r is an analytic function, which must be determined, and po and ~o are the pressure 
and vorticity at the point ~ = ~. 

The function 

i (3 .3 )  

will be a solution of Poisson's equation A~ = Im W. 

The bar over the function indicates that i is replaced by --i in the coefficients of the 
separate parts of this function, ~ = ~ -- i~. The function @o is the potential of a non- 
viscous, nondetached fluid flow, i.e., it satisfies Laplace's equation, and also the condi- 
tion of impermeability at the boundary ~ = 0. 

To determine the unknown function f(~), we shall require that the sticking condition he 
satisfied: @~(~, 0) = 0. Then the boundary value of f(~) will be equal to 

(3.4) 
I (D = T ,o~ (L O) ~ (~, o) 

0 

The point z = 0 does not belong to the solid surface, so that the expression in the 
integrand does not have singularities. The condition of impermeability @~(~, 0) = 0 is 
satisfied automatically, because the boundary value of the function f is real. 

Reconstructing the function f from its boundary value (3.4) in the entire half-plane 
n > 0 with the help of Cauchy's integral, we obtain 

I ~ f(Dd~ (3.5) 
f(~) = ~r ~ T=-~- ~" 

Thus the proposed method for solving Stokes' equations consist of the fact that any 
nonviscous flow, determined by the stream function ~o, is associated with a viscous flow, 
determined by the stream function ~ and Eqs. (3.3)-(3.5). To prove the uniqueness of the 
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solution obtained, we assume that (u~, v~) and (u~, v=) are two sets of velocity distributions, 
satisfying the conditions of periodicity and sticking at solid boundaries and the conditions 
at infinity. Forming the differences u = u~ -- u=, v = vl -- v=, we study the integral 

~ i v2 v$ ) dxdy. I =  (u~ -b uu x+ 

Assuming t h a t  t h e  q u a n t i t y  I i s  bounded ,  i . e ,  t h e  s i n g u l a r i t y  o f  t h e  v o r t i c i t y  a t  t h e  
e d g e s  o f  t h e  s l i t  h a s  t h e  fo rm lz _+ Xol a ,  where  a < 1, a f t e r  s i m p l e  t r a n s f o r m a t i o n s  we o b t a i n  
I = 0. T h e r e f o r e ,  v l  = v2 and u l  = u2 e v e r y w h e r e  i n  t h e  r e g i o n .  The s o l u t i o n  i s  u n i q u e .  

4.  We now f i n d  t h e  f u n c t i o n s  ~1 and 02,  e n t e r i n g  i n t o  t h e  e x p a n s i o n  ( 2 . 2 )  f o r  n > 3 / 2 ,  
and t h e  c o r r e s p o n d i n g  s t r e a m  f u n c t i o n s  o f  t h e  n o n v i s c o u s  f l o w  ~ol  and ~o2.  To d e t e r m i n e  t h e  
f u n c t i o n  ~o l  a t  t h e  p o i n t s  A(0 ,  i / b )  and E ( 0 ,  i b ) ,  which  a r e  images  o f  p o i n t s  o f  t h e  p h y s i c a l  
p l a n e  a t  i n f i n i t y  (y + + = ) ,  we a r r a n g e  t h e  s i n g u l a r i t i e s  i n  t h e  fo rm o f  p o i n t  v o r t i c e s  w i t h  
i n t e n s i t y  2ur~ and --2uF2: 

lm ( iF  1 In $ -- ~b ~ -- ~/b] (~, Xl)  - -  iF . ,  I n  ~--4-~7. 

The s t r e a m  f u n c t i o n  ~o~ s a t i s f i e s t h e  c o n d i t i o n  o f  i m p e r m e a b i l i t y ,  s i n c e  c o n j u g a t e  v o r -  
t i c e s  a r e  p o s i t i o n e d  a t  t h e  p o i n t s  (0 ,  - - i / b )  and (0 ,  - i b ) .  From t h e  c o n d i t i o n  t h a t  t h e  f u n c -  
ti~0h f ( ~ )  have  a s i n g l e  s h e e t  a t  a p o i n t  a t  i n f i n i t y  (f(go) = f(-~o) = 0 ) ,  we o b t a i n  Fa = r x .  
Such a f l o w  r e p r e s e n t s  a u n i f o r m  f l o w  i n  t h e  z p l a n e .  The two c o n s t a n t s  mo(x~,  x~)  and r ~ ( x o ,  
x~) a r e  d e t e r m i n e d  f rom t h e  known v o r t i c i t y  a t  t h e  p o i n t s  A and E, i . e . ,  f rom t h e  c o n d i t i o n s  
(2.3) and (2.4): 

+~ 
y ~" - t 1. (~ + b ~') 

a o )  o = 2rib  (b 2 - -  l )  (~2 _~_ b 2) (1 -~ b2~ 2) x 2 (~, O) d~, 
--go 

+oo 
2bF1 ~ :2 ~ - -  i In ~ + l/b~ d~ ~B"IL 

�9 . ~  (~ + s  (~ + ~*r ~ + ~ ,~ (r o) = ~ - i" 

The expansion for the velocity at the point y = go has the form 

~l~(x, oo, xl) = B2Ey -? ~F 1 + o(t). ( 4 . 1 )  

The second term in the expansion of ~FI is responsible for the slipping of the velocity 
at the bottom of the boundary layer. The dependence PI/B2X on the coefficient of permeability 
xo is shown in Fig. 4. By joining the boundary layer expansion with (4.1), we obtain 

~(xx, yl; 6) = 6T~(x~, Y) q- 8,*~(x~, Y) q- o(Sn), ' (4.2) 

where ~ ~2Y(x,, 0) = ~F1. 

The second term in the expansion (4.2), characterizing the slipping, is larger than the 
term associated with the displacement of the outer nonviscous flow on the profile and is of 
the order of 0(62). 

To determine the function ~o2 at the points A and E, we position a source and a sink 
with the same intensities q(xl) = Bvo/~ < O: 
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The stream function ~2 determines the pressure drop hp = PA -- PE, required for realizing 
suction. It does not depend on the value of the vorticity at infinitely distant points 
(y = +__~) and is proportional to the suction rate: 

AP(xo, x,) = --4B% ~ i l + x ( b O )  ~ �9 ~ (~, O) (~2 + b~) (l + b ~ )  > O. 
o 

The dependence of Ap/(Bvo) on the coefficient of permeability xo is shown in Fig. 4. 
In the case of low permeability of the slits (xo << I), the pressure losses increase sharply, 
5p = --8Bvox~2/w. In the case of a large permeability of the slits (i -- xo << i), the 
pressure losses are small Ap =--~Bvo(l -- xo) = 

At sharp edges of the slits C and C', the vorticity has an infinite discontinuity. 
At the boundary of the boundary layer (y ~ +~), the perturbation of the vorticity decays 
proportionally to y exp(--~y). 

If the coefficient of permeability is small, i.e., xo << i, theft by passing to the 
limit wb = 4/xo + ~ we obtain the well-known solution of the problem of flow past a single 
slit [2]: 

W = _ _ q ~ ( ~ 2  __ i ) - - 1 /9 ,  2~ = 2z~0 = --~ --  l/~. 

The p r o p o s e d  method f o r  s o l v i n g  t h e  p r o b l e m s  o f  t h e  t h e o r y  o f  c r e e p i n g  m o t i o n s  i s  a l s o  
a p p l i c a b l e  t o , t h e  more g e n e r a l  c a s e  when t h e  w a l l s  o f  t h e  s l i t  and o f  t h e  s u c t i o n  c h a n n e l  a r e  
curves. Assume, once again, that the function x + iy = z(~) conformally maps the region of 
flow into the half-plane Im ~ > 0 in such a way that there is a one-to-one correspondence 
between the boundary ~ = 0 and the solid walls. Representing the solution of the problem 
in the form (3.2) and (3.3), instead of the sticking condition (3.4) we obtain 

d/~ (~) Or ~ (~, o) = ~ ~o~ (L 0), ( 4 . 3 )  
r ~ (~, o) - - 4 -  + / ~ ( D  oN 

where  r2(~, O) x~(~, O) + y2(~, 0), /(~, O) = fl(~) + i/s(~). 

Thus we have obtained the generalized Hilbert boundary-value problem with the condition 
containing a first derivative. The solution of this problem is unique [3]. The problem of 
the flow past a fluted impermeable wall with the fluting period 2T << ~B/2 also reduces to 
the Hilbert problem (4.3). The other limiting case (2T >> 6) is examined in [4]. 

5. In the case 1 < n < 3/2, the function ~2 is also found from the solution of Stokes' 
equations. It remains to determine the function ~i, which is a solution of Euler's equations. 
To determine the vorticity --A~i, which is conserved along a streamline, we shall study a 
flow with the characteristic transverse scale ~2(n-I). At this distance, the boundary layer 
is completely renewed due to the suctioning of the liquid. Since the vorticity in this 
boundary layer is constant, the vorticity entering into the given section of the inner region 
will also be constant and equal to B=%. 
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We note in passing that in view of the presence of a layer of renewal, the asymptotic 
approach under study is valid at distances 0[~ =(n-x)] from the point of onset of auctioning 
and at distances 0(~ n) from the end of the section of auctioning. 

Thus the solution satisfying the joining conditions as y +_+~ and the sticking condition 
has the form 

~yy (x, y, zO = ~ f~ y > O, (5.  l )  
for y < O .  

Since this solution formally satisfies the Navier-Stokes equation, for 1 < n < 3/2 all 
o functions ~j entering into the expansion (2:2) will be equal to zero. 

The discontinuity of the solution (5.1) is inadmissible in a viscous liquid. Therefore, 
in the region y =O(E), where ~<< i, a local viscous layer is formed, in which the discontinuity of 
the vorticity is smoothed out. The scheme of the flow with an indication of the characteris- 
tic thickness of the regions is shown in Fig. 5, where 1 is the main part of the boundary 
layer, 2 is the locally nonviscous zone, 3 is the locally viscous boundary layer, and 4 is 
the local zone of creeping (Stokes) flow, determined by the stream function @~. In this case, 
the gradients of the pressure, caused by the displacing action of the viscous boundary layer, 
are not transferred into the unperturbed flow because of the damping effect of the intermediate 
layer, where x = o(~n), y = 0(6). 

The case when 0 < n < 1 differs considerably from the cases examined above. The expan- 
sion (2.2) is inapplicable, because the thickness of the. locally nonviscous layer, which is of 
the order of 0(~ n), exceeds the thickness of the boundary layer and the layer near the wall 
with a scale of T x T becomes nonviscous. 

For 0 < n < 3/4, a viscous boundary layer with a characteristic thickness of O(6a+n/3) 
and with a zero pressure gradient forms near the slit. For 3/4 < n < I, the displacing effect 
of this layer leads to the appearance of pressure gradients of a different order in the outer 
nonviscous flow: The flow becomes restructured. The regime of free interaction is realized 
with n = 3/4; in the viscous boundary layer, the expansion 

~(x~, y~; 8) = 88/2~(x, y~) + o(83/~), 

where Yl = 65/aY2, is valid. 

The system of equations describing the flow in this region has the standard form [5] 

a~' O~F 'O'W O2~F dp* 03't r (5.2) 
au~ a~au~ ax ay~ =--~z + a~--~' 

+1 

I [ o p* (x) = ~.-,, g(x )c tg~  (x~ x) dx ~ 
--I 

g (x) = - -  lim o~lax  
y,~oo o~FI OY~ " 

At solid boundaries (]x I 

is satisfied. 

For Ix[ < Xo, we have 

> Xo, Y2 = 0) the sticking condition 

�9 o T / a x  = o T / @ . ,  = 0 

, o ~ ( x ,  O)/Ox = O. 

The c o n d i t i o n  a t  t h e  u p p e r  b o u n d a r y  o f  t h e  v i s c o u s  b o u n d a r y  l a y e r  
by  j o i n i n g  the  a s y m p t o t i c  e x p a n s i o n s :  

O~F/Oy~ = B2~,y~i 

The c o n d i t i o n  a t  t he  l o w e r  b o u n d a r y  o f  t he  v i s c o u s  b o u n d a r y  l a y e r  (y2 § - ~ )  h a s  t h e  fo rm 

OlFlOy~ = O. 

Instead of giving the initial data, the condition of periodicity 0~(--I, y~)/Oyz = 
aIF(i, y2)/OY2 is used. 

(y2 § +o~) is found 
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The flow regime studied above can also be singled out in the more general case when 
instead of the linear velocity profile at the bottom of the boundary layer (1.4), a power- 
law profile ~IY(xl, Y § 0) = %yK, where 0 < k < ~, holds. The flow will be a creeping flow 
if 

[3/(k-I-~) ~,  |/2<~'.~.2, 
2>n>ll ~, k>2. 

The author is very grateful to A. V. Zubtsov and V. F. Molchanov for fruitful dis- 
cussions. 
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PENETRATION OF A BLUNT BODY INTO A SLIGHTLY COMPRESSIBLE 

LIQUID 

A. A. Korobkin UDC 532.59:522.2 

Introduction. We will consider ~he initial stage of nonsteady state motion of a liquid 
produced by its penetration by a solid body. Initially (t' = 0) the liquid is at rest and 
the body touches the free surface at a single point. The region ~(t'), occupied by the 
liquid, varies with time, while its boundary ~(t') consists of the free surface Ei, and the 
solid surface of the penetrating body E2, the contact line between them F, and, possibly, 
the inmobile solid walls E3 (as for example, in landing of an airplane on the surface of a 
body of water). The velocity range is assumed such that the Reynolds number Re >> 1 while 
the Mach number M << i. 

Quantitative information on the penetration process can be obtained only from numerical 
calculations. However, the accuracy of such calculations decreases at times when the flow 
topology changes, singularities develop in the pressure field, infinite accelerations of 
liquid particles occur, etc. Singularities like these must be treated analytically. Numeri- 
cal solution of the problem of penetration of sharp bodies (wedges, cones) into an incompres- 
sible liquid were constructed in [I], and the pressure distribution obtained for the contact 
spot agreed well with experiment. But for blunt bodies use of the ideal incompressible 
liquid model leads to infinite pressures at t' = 0, no matter how low the penetration veloc- 
ity [2]. This is because the incompressible liquid model in which the perturbation propa- 
gation velocity is assumed infinite is not capable of describing the important stage of the 
process of penetration of a blunt body. In fact there exists a time t' of the order of 
several psecs, such that at t' < t' the contact line F moves with a velocity exceeding the , 
speed of sound in the liquid. The perturbation front is then attached to the line s and the 
perturbed portion of the liquid is limited by the solid surface on one side and the shock wave 
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